kmiainfo: A new innovation enables the production of time crystals for the first time without the need for supercooling A new innovation enables the production of time crystals for the first time without the need for supercooling

A new innovation enables the production of time crystals for the first time without the need for supercooling

ابتكار جديد يتيح إنتاج البلورات الزمنية لأول مرة بدون حاجة للتبريد الفائق هذا الابتكار يمهد الطريق لتخليق بلورات زمنية بحجم الرقائق يمكن استخدامها في حياتنا اليومية، من دون الحاجة إلى المعدات المخبرية باهظة الثمن التي كانت تلزم لتشغيلها.  لطالما حير البعد الرابع -الزمن- عقول البشر، بدءا من تطويعه في النظرية النسبية لأينشتاين، ومرورا بمنحه بطولة رمزية في أفلام السفر عبر الزمن.  ونظرا لكونه بُعدا غير محسوس كالأبعاد المكانية الثلاثة الأخرى (الطول والعرض والارتفاع)، فإن أذهاننا تغدو خماصا وتروح ظمأى عندما تَهِم بالتفكير فيه. وهو ما يصفه القديس أوغسطين بقوله "أنا أعرف الزمن ما لم أسأل عنه. وحالما تاقت نفسي لشرحه لمن يسألني، أجدني لا أعرفه بوضوح".  فهل من الممكن أن نرى هذا البعد ذا الطبيعة المجردة في شيء حسي ملموس؟  دعنا نقرّ بأن التفكير في الزمن يشبه "حرث سطح البحر" كما يقول الفيزيائي الفرنسي إتيان كلاين في كتابه "هل الزمن موجود" (?Le Temps existe-t-il). غير أن "البلورات الزمنية" (Time crystals) قد تغير من هذه الفرضية.  ولتبسيط الأمر، فإن ذلك يشبه أن تجلس أنت ومشجعي فريقك في مقاعد محددة وعلى بعد منتظم من بعضكم بعضا، مكونين أنماطا منتظمة -ولتكن سداسية الشكل مثلا- ومتكررة وأنتم ممسكين بيد بعضكم بعضا؛ حيث تنشئون بذلك شبكة مترابطة لا تتحرك كثيرا وتتكرر في مقاعد الملعب.  وبالمقاربة، فإن الذرات والجزيئات المكونة للبلورة تصطف بطريقة متماثلة في الأبعاد المكانية الثلاثة، مكونةً ما يعرف بالشبكة البلورية. وعلى الرغم من أن الشبكات البلورية قد تختلف في بنيتها، فإنها لا تتحرك أو تتغير كثيرا داخل البنية الواحدة، بل تتكرر مكانيا فقط.  فعندما تصطف ذرات الكربون جنبا إلى جنب في نقاط محددة لتكون بلورة الألماس، فإنها تكسر بذلك تماثلها المكاني المعهود في الفراغ، وهو ما يعرف باسم كسر "التماثل الانتقالي المكاني" (Spatial Transitional Symmetry)؛ ومن ثم فإن بلورة الألماس تتخذ أنماطا متكررة في المكان.  Time Crystals كريتسال المصدر: شترستوك SS1051778009تدور الذرات المكونة للبلورات الزمنية أولا في اتجاه معين ثم تكمل في الاتجاه الآخر (شترستوك) كسر التماثل الزمني غير أن عالم الفيزياء النظرية فرانك ويلكزك -الحائز جائزة نوبل عام 2004- اقترح نظريا وجود حالة غريبة للبلورات عام 2012، أطلق عليها اسم "البلورات الزمنية"؛ إذ يمكن لهذه البلورات أن تكرر أنماطها المنتظمة في الزمن. وبالتالي، فإن الأنماط المميزة للشبكة البلورية المكونة لتلك البلورة تتغير -وتعيد ترتيب نفسها- بشكل منتظم مع الزمن.   وبالفعل، فقد رصد العلماء عام 2017 -في دراستين منفصلتين– وجود هذه "البلورات الزمنية" التي تغير من أنماطها -المتكررة والمنتظمة- بمرور الزمن، مما يعني أن هذه البلورات تكسر التماثل الانتقالي الزمني.  وتتصرف الذرات المكونة للبلورات الزمنية بشكل مغاير قليلا، إذ يعتريها "الدوران" (Spinning) أولا في اتجاه معين، ثم تكمل في الاتجاه الآخر. وتكون هذه التذبذبات -التي يشار لها باسم "التكتكة" (Ticking)- ذات تردد محدد ومنتظم، وهو ما يسمح بتكرارية أنماط البلورة في الزمان والمكان معا. ويتطلب إنتاج ودراسة هذه "البلورات الزمنية" معدات مخبرية تعمل عند درجة حرارة منخفضة للغاية تقترب من الصفر المطلق.  غير أن دراسة حديثة -نشرت في دورية "نيتشر كوميونيكيشنز" (Nature Communications) 14 فبراير/شباط الجاري- قد تمكنت من ابتكار بلورة زمنية بدون تبريد فائق؛ إذ أنتجت هذه البلورة الضوئية الكمومية في درجة حرارة الغرفة.  وطبقا للبيان الصحفي الذي نشرته جامعة "كاليفورنيا في ريفرسايد" (University of California, Riverside)، فقد قام الفريق في البداية بتجهيز "رنَّان مستدق" (Microresonator) عبارة عن قرص مصنوع من زجاج فلوريد المغنيسيوم، وبقطر ملليمتر واحد فقط، ومن ثم سُلِّط شعاعان من أشعة الليزر على هذا الرنان.  وقد أشارت النتائج إلى تمكنهم من إنتاج بلورات زمنية؛ ومن ثم فإن هذه البلورات الزمنية قد أُنتِجت في نفس بيئتها، من دون حاجة إلى عزلها وحفظها عند درجة حرارة منخفضة للغاية. وهو ما يشير إليه حسين طاهري -المؤلف الرئيس للدراسة- بأنها "خطوة واعدة نحو إنتاج بلورات زمنية تتيح استخدامها في التطبيقات التكنولوجية".  ويضيف طاهري أن "تبادل الطاقة مع المحيط يفضي إلى انهيار الترتيب الزمني للنظام الذي يتم اختباره، لكن هذا النظام الضوئي يعمل على تحقيق توازن بينه وبين محيطه". ولذا، فإن هذا الابتكار يمهد الطريق لتخليق بلورات زمنية بحجم الرقائق يمكن استخدامها في حياتنا اليومية، من دون الحاجة إلى المعدات المخبرية باهظة الثمن التي كانت تلزم لتشغيلها.      A new innovation enables the production of time crystals for the first time without the need for supercooling This innovation paves the way for the creation of chip-sized time crystals that can be used in our daily lives, without the expensive laboratory equipment that was required to operate them.  The fourth dimension - time - has always puzzled the minds of humans, starting with its adaptation in Einstein's theory of relativity, to his being given a symbolic starring in time travel films.  Since it is an imperceptible dimension like the other three spatial dimensions (length, width, and height), our minds become thirsty and thirsty when you think about it. This is what St. Augustine describes when he says, “I know the time unless I ask about it. As soon as I aspire to explain it to those who ask me, I find that I do not know it clearly.”  Is it possible to see this dimension of an abstract nature in something tangible and tangible? Let us admit that thinking about time is like “plowing the surface of the sea,” as the French physicist Étienne Klein says in his book “Le Temps existe-t-il?” However, "time crystals" have changed this hypothesis.  Crystal properties "Crystals" are formed by aligning atoms and molecules in a regular, constant, repetitive spatial arrangement that is restricted in the three spatial dimensions.  To put it simply, it's like you and your fans are sitting in specific seats and at a regular distance from each other, forming regular patterns - say hexagons - and repeating while holding each other's hand; As you create an interconnected network that does not move much and is repeated in the stadium seats.  By analogy, the atoms and molecules that make up the crystal are aligned in a similar manner in the three spatial dimensions, forming what is known as the crystal lattice. Although crystal lattices may differ in their structure, they do not move or change much within a single structure, but only repeat spatially.  When the carbon atoms are lined up side by side at specific points to form a diamond crystal, they break their usual spatial symmetry in a vacuum, which is known as the “Spatial Transitional Symmetry” break; Hence, the diamond crystal takes repeating patterns in place.  Break temporal symmetry However, theoretical physicist Frank Wilczek - winner of the Nobel Prize in 2004 - theoretically proposed the existence of a strange state for crystals in 2012, which he called "time crystals"; These crystals can repeat their regular patterns in time. Thus, the characteristic patterns of the crystal lattice that make up that crystal change - and rearrange themselves - regularly over time.  Indeed, in 2017, scientists monitored - in two separate studies - the presence of these "time crystals" that change their patterns - repeating and regular - over time, which means that these crystals break the time-transitional symmetry.  The atoms that make up the time crystals behave a little differently, as they are "spinning" first in one direction, and then continue in the other direction. These oscillations - which are referred to as "ticking" - have a specific and regular frequency, which allows the repetition of crystal patterns in both time and space. Producing and studying these "time crystals" requires laboratory equipment that operates at extremely low temperatures, close to absolute zero.  However, a recent study - published in the journal Nature Communications on February 14 - was able to create a time crystal without supercooling; This quantum photonic crystal was produced at room temperature.  promising horizon According to a press release published by the University of California, Riverside, the team first installed a "microresonator" - a disk made of magnesium fluoride glass, just one millimeter in diameter - and then shone two beams. of lasers on this resonator.  The results indicated that they could produce time crystals; Hence, these time crystals were produced in the same environment, without the need to isolate them and keep them at extremely low temperatures. Which Hussein Taheri, the lead author of the study, refers to as "a promising step towards the production of time crystals that allow them to be used in technological applications."  Taheri adds that "the exchange of energy with the ocean leads to the breakdown of the temporal arrangement of the system being tested, but this photosystem works to achieve a balance between it and its surroundings." Therefore, this innovation paves the way for the creation of chip-sized time crystals that can be used in our daily lives, without the expensive laboratory equipment that was required to operate them.

A new innovation enables the production of time crystals for the first time without the need for supercooling

This innovation paves the way for the creation of chip-sized time crystals that can be used in our daily lives, without the expensive laboratory equipment that was required to operate them.

The fourth dimension - time - has always puzzled the minds of humans, starting with its adaptation in Einstein's theory of relativity, to his being given a symbolic starring in time travel films.

Since it is an imperceptible dimension like the other three spatial dimensions (length, width, and height), our minds become thirsty and thirsty when you think about it. This is what St. Augustine describes when he says, “I know the time unless I ask about it. As soon as I aspire to explain it to those who ask me, I find that I do not know it clearly.”

Is it possible to see this dimension of an abstract nature in something tangible and tangible?
Let us admit that thinking about time is like “plowing the surface of the sea,” as the French physicist Étienne Klein says in his book “Le Temps existe-t-il?” However, "time crystals" have changed this hypothesis.

Crystal properties
"Crystals" are formed by aligning atoms and molecules in a regular, constant, repetitive spatial arrangement that is restricted in the three spatial dimensions.

To put it simply, it's like you and your fans are sitting in specific seats and at a regular distance from each other, forming regular patterns - say hexagons - and repeating while holding each other's hand; As you create an interconnected network that does not move much and is repeated in the stadium seats.

By analogy, the atoms and molecules that make up the crystal are aligned in a similar manner in the three spatial dimensions, forming what is known as the crystal lattice. Although crystal lattices may differ in their structure, they do not move or change much within a single structure, but only repeat spatially.

When the carbon atoms are lined up side by side at specific points to form a diamond crystal, they break their usual spatial symmetry in a vacuum, which is known as the “Spatial Transitional Symmetry” break; Hence, the diamond crystal takes repeating patterns in place.

Break temporal symmetry
However, theoretical physicist Frank Wilczek - winner of the Nobel Prize in 2004 - theoretically proposed the existence of a strange state for crystals in 2012, which he called "time crystals"; These crystals can repeat their regular patterns in time. Thus, the characteristic patterns of the crystal lattice that make up that crystal change - and rearrange themselves - regularly over time.

Indeed, in 2017, scientists monitored - in two separate studies - the presence of these "time crystals" that change their patterns - repeating and regular - over time, which means that these crystals break the time-transitional symmetry.

The atoms that make up the time crystals behave a little differently, as they are "spinning" first in one direction, and then continue in the other direction. These oscillations - which are referred to as "ticking" - have a specific and regular frequency, which allows the repetition of crystal patterns in both time and space. Producing and studying these "time crystals" requires laboratory equipment that operates at extremely low temperatures, close to absolute zero.

However, a recent study - published in the journal Nature Communications on February 14 - was able to create a time crystal without supercooling; This quantum photonic crystal was produced at room temperature.

Promising horizon
According to a press release published by the University of California, Riverside, the team first installed a "microresonator" - a disk made of magnesium fluoride glass, just one millimeter in diameter - and then shone two beams. of lasers on this resonator.

The results indicated that they could produce time crystals; Hence, these time crystals were produced in the same environment, without the need to isolate them and keep them at extremely low temperatures. Which Hussein Taheri, the lead author of the study, refers to as "a promising step towards the production of time crystals that allow them to be used in technological applications."

Taheri adds that "the exchange of energy with the ocean leads to the breakdown of the temporal arrangement of the system being tested, but this photosystem works to achieve a balance between it and its surroundings." Therefore, this innovation paves the way for the creation of chip-sized time crystals that can be used in our daily lives, without the expensive laboratory equipment that was required to operate them.

Post a Comment

Previous Post Next Post